计算机视觉
图像处理

meanShift算法介绍

meanShift,均值漂移,在聚类、图像平滑、分割、跟踪等方面有着广泛的应用。meanShift这个概念最早是由Fukunage在1975年提出的,其最初的含义正如其名:偏移的均值向量;但随着理论的发展,meanShift的含义已经发生了很多变化。如今,我们说的meanShift算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,然后以此为新的起始点,继续移动,直到满足一定的结束条件。

在很长一段时间内,meanShift算法都没有得到足够的重视,直到1995年另一篇重要论文的发表。该论文的作者Yizong Cheng定义了一族核函数,使得随着样本与被偏移点的距离不同,其偏移量对均值偏移向量的贡献也不同。其次,他还设定了一个权重系数,使得不同样本点的重要性不一样,这大大扩展了meanShift的应用范围。此外,还有研究人员将非刚体的跟踪问题近似为一个meanShift的最优化问题,使得跟踪可以实时进行。目前,利用meanShift进行跟踪已经相当成熟。

meanShift算法其实是一种核密度估计算法,它将每个点移动到密度函数的局部极大值点处,即,密度梯度为0的点,也叫做模式点。在非参数估计部分,我们提到,多维核密度估计可以表示为:

估计为0。meanShift向量也总是指向密度增加最大的方向,这可以由上式中的分子项来保证,而分母项则体现每次迭代核函数移动的步长,在不包含感兴趣特征的区域内,步长较长,而在感兴趣区域内,步长较短。也就是说,meanShift算法是一个变步长的梯度上升算法,或称之为自适应梯度上升算法。

meanShift算法用于目标跟踪的优缺点

meanShift算法用于视频目标跟踪时,采用目标的颜色直方图作为搜索特征,通过不断迭代meanShift向量使得算法收敛于目标的真实位置,从而达到跟踪的目的。

传统的meanShift算法在跟踪中有几个优势:

(1)算法计算量不大,在目标区域已知的情况下完全可以做到实时跟踪;

(2)采用核函数直方图模型,对边缘遮挡、目标旋转、变形和背景运动不敏感。

同时,meanShift算法也存在着以下一些缺点:

(1)缺乏必要的模板更新;

(2)跟踪过程中由于窗口宽度大小保持不变,当目标尺度有所变化时,跟踪就会失败;

(3)当目标速度较快时,跟踪效果不好;

(4)直方图特征在目标颜色特征描述方面略显匮乏,缺少空间信息;

由于其计算速度快,对目标变形和遮挡有一定的鲁棒性,所以,在目标跟踪领域,meanShift算法目前依然受到大家的重视。但考虑到其缺点,在工程实际中也可以对其作出一些改进和调整;例如:

(1)引入一定的目标位置变化的预测机制,从而更进一步减少meanShift跟踪的搜索时间,降低计算量;

(2)可以采用一定的方式来增加用于目标匹配的“特征”;

(3)将传统meanShift算法中的核函数固定带宽改为动态变化的带宽;

(4)采用一定的方式对整体模板进行学习和更新;

转载注明来源:CV视觉网 » meanShift算法介绍

分享到:更多 ()
扫描二维码,给作者 打赏
pay_weixinpay_weixin

请选择你看完该文章的感受:

0不错 0超赞 0无聊 0扯淡 0不解 0路过

评论 4

评论前必须登录!