计算机视觉
图像处理

基于HALCON的模板匹配方法总结

基于Halcon的模板匹配方法总结

很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总是抽不出时间。去年有过一段时间的集中学习,做了许多的练习和实验,并对基于HDevelop的形状匹配算法的参数优化进行了研究,写了一篇《基于HDevelop的形状匹配算法参数的优化研究》文章,总结了在形状匹配过程中哪些参数影响到模板的搜索和匹配,又如何来协调这些参数来加快匹配过程,提高匹配的精度,这篇paper放到了中国论文在线了,需要可以去下载。

德国MVTec公司开发的HALCON机器视觉开发软件,提供了许多的功能,在这里我主要学习和研究了其中的形状匹配的算法和流程。HDevelop开发环境中提供的匹配的方法主要有三种,即Component-BasedGray-Value-BasedShape-Based,分别是基于组件(或成分、元素)的匹配,基于灰度值的匹配和基于形状的匹配。这三种匹配的方法各具特点,分别适用于不同的图像特征,但都有创建模板和寻找模 板的相同过程。这三种方法里面,我主要就第三种-基于形状的匹配,做了许多的实验,因此也做了基于形状匹配的物体识别,基于形状匹配的视频对象分割和基于 形状匹配的视频对象跟踪这些研究,从中取得较好的效果,简化了用其他工具,比如VC++来开发的过程。在VC下往往针对不同的图像格式,就会弄的很头疼,更不用说编写图像特征提取、模板建立和搜寻模板的代码呢,我想其中间过程会很复杂,效果也不一定会显著。下面我就具体地谈谈基于HALCON的形状匹配算法的研究和心得总结。

1.Shape-Based matching的基本流程

HALCON提 供的基于形状匹配的算法主要是针对感兴趣的小区域来建立模板,对整个图像建立模板也可以,但这样除非是对象在整个图像中所占比例很大,比如像视频会议中人 体上半身这样的图像,我在后面的视频对象跟踪实验中就是针对整个图像的,这往往也是要牺牲匹配速度的,这个后面再讲。基本流程是这样的,如下所示:

⑴首先确定出ROI的矩形区域,这里只需要确定矩形的左上点和右下点的坐标即可,gen_rectangle1()这个函数就会帮助你生成一个矩形,利用area_center()找到这个矩形的中心;

⑵然后需要从图像中获取这个矩形区域的图像,reduce_domain()会得到这个ROI这之后就可以对这个矩形建立模板,而在建立模板之前,可以先对这个区域进行一些处理,方便以后的建模,比如阈值分割,数学形态学的一些处理等等;

⑶接下来就可以利用create_shape_model()来创建模板了,这个函数有许多参数,其中金字塔的级数由Numlevels指定,值越大则找到物体的时间越少,AngleStart和AngleExtent决定可能的旋转范围,AngleStep指定角度范围搜索的步长;这里需要提醒的是,在任何情况下,模板应适合主内存,搜索时间会缩短。对特别大的模板,用Optimization来减少模板点的数量是很有用的;MinConstrast将模板从图像的噪声中分离出来,如果灰度值的波动范围是10,则MinConstrast应当设为10;Metric参数决定模板识别的条件,如果设为’use_polarity’,则图像中的物体和模板必须有相同的对比度;创建好模板后,这时还需要监视模板,inspect_shape_model()来完成,它检查参数的适用性,还能帮助找到合适的参数;另外,还需要获得这个模板的轮廓,用于后面的匹配,get_shape_model_contours()则会很容易的帮我们找到模板的轮廓;

⑷创建好模板后,就可以打开另一幅图像,来进行模板匹配了。这个过程也就是在新图像中寻找与模板匹配的图像部分,这部分的工作就由函数find_shape_model()来承担了,它也拥有许多的参数,这些参数都影响着寻找模板的速度和精度。这个的功能就是在一幅图中找出最佳匹配的模板,返回一个模板实例的长、宽和旋转角度。其中参数SubPixel决定是否精确到亚像素级,设为’interpolation’,则会精确到,这个模式不会占用太多时间,若需要更精确,则可设为’least_square’,’lease_square_high’,但这样会增加额外的时间,因此,这需要在时间和精度上作个折中,需要和实际联系起来。比较重要的两个参数是MinSocre和Greediness,前一个用来分析模板的旋转对称和它们之间的相似度,值越大,则越相似,后一个是搜索贪婪度,这个值在很大程度上影响着搜索速度,若为0,则为启发式搜索,很耗时,若为1,则为不安全搜索,但最快。在大多数情况下,在能够匹配的情况下,尽可能的增大其值。

找到之后,还需要对其进行转化,使之能够显示,这两个函数vector_angle_to_rigid()affine_trans_contour_xld()在这里就起这个作用。前一个是从一个点和角度计算一个刚体仿射变换,这个函数从匹配函数的结果中对构造一个刚体仿射变换很有用,把参考图像变为当前图像。

2、基于形状匹配的参数关系与优化

在HALCON的说明资料里讲到了这些参数的作用以及关系,在上面提到的文章中也作了介绍,这里主要是重复说明一下这些参数的作用,再强调一下它们影响匹配速度的程度;

在为了提高速度而设置参数之前,有必要找出那些在所有测试图像中匹配成功的设置,这时需考虑以下情况:

①必须保证物体在图像边缘处截断,也就是保证轮廓的清晰,这些可以通过形态学的一些方法来处理;

②如果Greediness值设的太高,就找不到其中一些可见物体,这时最后将其设为0来执行完全搜索;

③物体是否有封闭区域,如果要求物体在任何状态下都能被识别,则应减小MinScore值;

④判断在金字塔最高级上的匹配是否失败,可以通过find_shape_model()减小NumLevels值来测试;

⑤物体是否具有较低的对比度,如果要求物体在任何状态下都能被识别,则应减小MinContrast值;

⑥判断是否全局地或者局部地转化对比度极性,如果需要在任何状态下都能被识别,则应给参数Metric设置一个合适的值;

⑦物体是否与物体的其他实例重叠,如果需要在任何状态下都能识别物体,则应增加MaxOverlap值;

⑧判断是否在相同物体上找到多个匹配值,如果物体几乎是对称的,则需要控制旋转范围;

如何加快搜索匹配,需要在这些参数中进行合理的搭配,有以下方法可以参考:

①只要匹配成功,则尽可能增加参数MinScore的值;

②增加Greediness值直到匹配失败,同时在需要时减小MinScore值;

③如果有可能,在创建模板时使用一个大的NumLevels,即将图像多分几个金字塔级;

④限定允许的旋转范围和大小范围,在调用find_shape_model()时调整相应的参数;

⑤尽量限定搜索ROI的区域;

除上面介绍的以外,在保证能够匹配的情况下,尽可能的增大Greediness的值,因为在后面的实验中,用模板匹配进行视频对象跟踪的过程中,这个值在很大程度上影响到匹配的速度。

当然这些方法都需要跟实际联系起来,不同图像在匹配过程中也会有不同的匹配效果,在具体到某些应用,不同的硬件设施也会对这个匹配算法提出新的要求,所以需要不断地去尝试。在接下来我会结合自己做的具体的实验来如何利用HALCON来进行实验,主要是在视频对象分割和视频对象的跟踪方面。

reate_shape_model(Template : : NumLevels, AngleStart, AngleExtent, AngleStep, Optimization, Metric, Contrast, MinContrast : ModelID)

Template :模板图像

NumLevels:图像金字塔级数,该值越小,模板匹配耗时越长,可设置自动-‘Auto’,可使用get_shape_model_params来获取模板所有参数,包括级数。

AngleStart:模板起始角度。

AngleExtent:模板角度幅度,若目标有旋转,模板需做不同角度。

AngleStep:角度步长,可设置自动-‘Auto’。

注:若选择预生产模式,不同角度的模板在创建模板时生成。否则在匹配find_shape_model时生成,这样无疑会耗费更长的模板匹配时间。

Optimization:模板点储存模式,设为’none’时,全点储存,若选择点较少时,匹配分值可能较低。当设为’auto’时,点数自动减少。当模板较小时,较少点数并不会降低模板匹配时间,因为将有更多的可能的实例必须被检查。所以当模板较大时,可较少点数,用于提速。

Metric:图像与模板中对比度差异不大时,选择’use_polarity’;设为’ignore_global_polarity’,只有对比度相反的对象才会被发现,且模板与噪声区分开来。在可提取完整模板信息的前提下,设置偏大,可减少噪声提取。

ModelID:输出创建模板ID。

可参考http://chuansince1991.blog.163.com/blog/static/991242122011101075156680/

find_shape_model(Image : : ModelID, AngleStart, AngleExtent, MinScore, NumMatches, MaxOverlap, SubPixel, NumLevels, Greediness : Row,Column, Angle, Score)

Image:搜索图像

ModelID:模板ID

AngleStart:搜索起始角度

AngleExtent:搜索角度幅度。匹配时,从图像Image中搜索设定角度范围内的模板

MinScore:最小匹配分值,大于该分值才可被搜索到.参数MinScore定义模板匹配时至少有个什么样的质量系数才算是在图像中找到模板。MinScore设置的越大,搜索的就越快。如果模板在图像中没有被遮挡,MinScore可以设置为0.8这么高甚至0.9。

NumMatches:匹配个数。若满足匹配分值的结果个数大于该值NumMatches,则返回质量系数最好的结果;若满足匹配分值的结果个数小于等于该值NumMatches,则返回的所有满足匹配分值的结果;设为0时,返回所有满足分值的结果。

MaxOverlap:如果模型具有对称性,会在搜索图像的同一位置和不同角度上找到多个与目标匹配的区域。参数MaxOverlap是0到1之间的,定义了找到的两个目标区域最多重叠的系数,以便于把他们作为两个不同的目标区域分别返回。如果找到的两个目标区域彼此重叠并且大于MaxOverlap,仅仅返回效果最好的一个。重叠的计算方法是基于找到的目标区域的任意方向的最小外接矩形(看smallest_rectangle2)。如果MaxOverlap=0, 找到的目标区域不能存在重叠, 如果MaxOverla p=1,所有找到的目标区域都要返回。

SubPixel:精度控制,该参数的选择影响定位结果参数(位置,角度,缩放比例)。精度越高速度越慢。None(不使用亚像素-100%)-‘interpolation’(差值亚像素-100%-0.079)-‘least_squares_high’(最小二乘亚像素-120%-0.025)-‘least_squares_high’(最小二乘亚像素-131%-0.014)- ‘least_squares_very_high’(最小二乘亚像素-142%-0.013),【方法(解释-耗时-角度误差)】

NumLevels:搜索时使用金字塔层数.如果NumLevels=0,使用创建模板时金字塔的层数。

Greediness:用于控制定位加速。该值越大,速度越快,找丢模板的几率也越大。推荐值0.7-0.9.

ps:模板匹配需要轮廓的完整,所以用阈值化函数提取前后景比较好。

1.如果模板图片和测试图片质量较差,那么模板用比较好的轮廓,采用助手优化识别速度;定位时测试图片用原图定位。

2.创建可变模型时要用前景的region生成可变模型,然后测试图片的预处理一定要与可变模型的预处理相一致。参考例程variation_model_illumination.hdev。

转载注明来源:CV视觉网 » 基于HALCON的模板匹配方法总结

分享到:更多 ()
扫描二维码,给作者 打赏
pay_weixinpay_weixin

请选择你看完该文章的感受:

0不错 0超赞 0无聊 0扯淡 0不解 0路过

评论 抢沙发

评论前必须登录!